Atmosphere: #1 Intro and fundamentals

• Let's consider that the atmosphere and ocean is no different from the classical fluid dynamic problem.

$$\rho = \rho(p)$$

- Because of gravity, pressure increases downward.
- In a stable state, light fluid is always on top of heavy fluid.
- Also, assume that there is no obstacles to bend the fluid.
- What do you expect to see?

 $\rho = \rho(p, T)$

- Heating and cooling change the density of the fluid, making dynamical motions.
- Thermal energy can be converted to kinetic energy.
- The density of the fluid also depends on temperature

• The earth rotates!

Dissipation

Streaks of dye falling vertically Flows of vertical columns

- Rotation does not always matter.
- Timescale of rotation: au
- Timescale of the fluid: $\frac{L}{U}$

$$Ro = \tau \times \frac{U}{L}$$

- $Ro \gg 1$: The fluid is faster than rotation.
- $Ro \ll 1$: Rotation is faster than fluid.

 $Ro = \tau \times \frac{U}{L}$

 $U \sim 1 \ {\rm cm} \ {\rm s}^{-1}$ $L \sim 30 \ {\rm cm}$ $\tau \to \infty$

 $U \sim 1 \ {\rm cm} \ {\rm s}^{-1}$ $L \sim 30 \ {\rm cm}$ $\tau \sim 3 \ {\rm s}$

Atmosphere :
$$\tau \sim 1 \text{ day} \approx 10^5 \text{ s}$$

 $U \sim 10 \text{ m s}^{-1}$
 $L \sim 5000 \text{ km}$
Ocean : $\tau \sim 1 \text{ day} \approx 10^5 \text{ s}$
 $U \sim 0.1 \text{ m s}^{-1}$
 $L \sim 1000 \text{ km}$

Rotation is important in determining the fluid motion on earth!

Chemical composition of the atmosphere

Permanent Gases			Variable Gases			
Gas	Symbol	% by volume	Gas	Symbol	% by volume	Parts per million
Nitrogen	N2	78.08	Water Vapor	H2O	0~4	
Oxygen	O2	20.95	Carbon dioxide	CO2	0.036	360ppmV
Argon	Ar	0.93	Methane	CH4	0.0017	
Neon	Ne	0.0018	Nitrous oxide	N2O	0.00003	
Helium	Не	0.0005	Ozone	O3	0.000004	
Hydrogen	H2	0.00006	Particles		0.000001	
Xenon	Xe	0.000009	Chlorofluro carbons		0.00000002	

Chemical composition of the atmosphere

Vertical distribution of gases

Goody and Yung, 1989

Characteristics of the Atmosphere

- Atmospheric water vapor is present in variable amounts.
- Important for radiative transfer (greenhouse effect)
- Another gas important for greenhouse effect is CO₂.

Monthly mean CO₂ concentration Mauna Loa 1958 - 2018

> Data : R. F. Keeling, S. J. Walker, S. C. Piper and A. F. Bollenbacher Scripps CO2 Program (http://scrippsco2.ucad.edu/, Accessed 2019-01-06

CO2 concentration and climate

From : http://pog.mit.edu/12.003//pdf_slides/Topic2.pd

Physical properties of air: I. Dry air

• The atmosphere obeys the perfect gas law.

$$p = \rho RT$$

• Gas constant (R) for dry air:

$$R = 287 \text{ J kg}^{-1} \text{ K}^{-1}$$

 Air is compressible and we have to consider thermal expansion (to be covered later).

- The air parcel can contain both water vapor and dry air.
- Then the partial pressure of water vapor, e, is

$$e = \rho_v R_v T$$

• The partial pressure of dry air, p_d , is

$$p_d = \rho_d R_d T$$

• The pressure of the mixture, p, is

$$p = p_d + e$$

In practice, water vapor amount is so small, so

 $p \approx p_d$

- At a given temperature, T, there exists saturation vapor pressure.
- At saturation vapor pressure, e_s , the rate of evaporation is the same as the rate of condensation.

Figure 1.4, Marshall and Plumb (2008)

What do you expect to see if $e > e_s$?

- The moisture content decays rapidly with height.
- Tropics tends to be more moist (wetter) than polar regions.
- Precipitation occurs when air cools.
- In last glacial maximum, the earth was drier and barrener than now.

Cloud formation

